Процесс запуска спутника. Как работают спутники? Орбитальная скорость и высота

Запуск спутника в космос ознаменовался новой эрой и стал прорывом в области техники и космонавтики. Необходимость создания спутника определилась ещё в начале двадцатого века. Однако с самого начала на пути запуска спутника в космическое пространство стояло множество проблем, над которыми трудились самые лучшие инженеры и учёные. Эти проблемы были связаны с необходимостью создания двигателей, способных работать в тяжелейших условиях и при этом, они должны быть необычайно мощными. Так же проблемы были связаны с правильным определением траектории движения спутника.

Итак, советские ученые решили поставленные задачи, и 4 октября 1957 года в СССР успешно был запущен искусственный спутник, за движением которого наблюдал весь мир. Это событие стало мировым прорывом и обозначило новый этап, как в науке в целом, так и во всем мире.

Прямая трансляция запуска Союз-Прогресс (миссия к МКС)

Задачи, решаемые спутником

Задачи, решаемые запуском спутника можно определить как следующие:

1. Изучение климата;

Всем известно, какое влияние климат оказывает на сельское хозяйство, на военную инфраструктуру. Благодаря спутникам можно предсказать появление разрушающих стихий, избежать большого количества жертв.

2. Изучение метеоритов;

В космическом пространстве находится огромное количество метеоритов, вес которых достигает нескольких тысяч тонн. Метеориты могут представлять опасность не только для спутников, космических кораблей, но и для людей. Если при пролете метеорита сила трения невелика, то несгоревшая часть способна достигнуть Земли. Диапазон скорости метеоритов достигает от 1220 м/сек до 61000 м/сек.

3. Применение телевизионного вещания;

В настоящее время роль телевидения велика. В 1962 году был запущен первый телевизионный транслятор, благодаря ему мир впервые увидел видеокадры через Атлантику в течение нескольких минут.

4. Система GPS.

Система GPS играет огромную роль почти в каждой сфере нашей жизни. GPS подразделяется на гражданскую и военную. Она представляет собой электромагнитные сигналы, излучаемые в радиоволновом участке спектра антенной, установленной на каждом из спутников. Состоит из 24 спутников, которые находятся на месте орбиты на высоте 20200 км. Время обращения вокруг Земли составляет 12 часов.

Телекоммуникационный спутник “Арабсат-5Б”

Запуск «Союз»

Запуск спутников и выход их на орбиту

Для начала важно обозначит траекторию полета спутника. На первый взгляд, кажется, что логичнее запустить ракету перпендикулярно (по кратчайшему расстоянию до цели), однако, такой вид запуска оказывается невыгодным, как с инженерной точки зрения, так и с экономической. На спутник, запущенный вертикально действуют силы притяжения Земли, которые значительно сносят её от назначенной траектории, и, сила тяги становится равной силе тяжести Земли.

Чтобы избежать падения спутника, сначала, его запускают вертикально, чтобы он смог преодолеть упругие слои атмосферы, такой полет продолжается на протяжении всего 20 км. Далее спутник с помощью автопилота наклоняется и в горизонтальном направлении движется к орбите.

Кроме того, задача инженеров состоит в том, чтобы рассчитать траекторию полета таким образом, чтобы скорость, затрачиваемая на преодоление атмосферных слоёв, а так же на затрату топлива составляли лишь несколько процентов от характеристической скорости.

Немаловажным является и то, в какую сторону запустить спутник. При запуске ракеты в сторону вращения Земли, происходит приращение скорости, которое зависит от местоположения запуска. Например, в экваторе оно является максимальным и составляет 403 м/с.

Орбиты спутников бывают круговыми и эллиптическими. Эллиптической орбита будет являться в том случае, если скорость ракеты будет выше окружной. Точка, находящаяся в ближайшем положении называется перигеем, а наиболее отдаленная апогеем.

Сам запуск ракеты со спутником производится в несколько ступеней. При прекращении работы двигателя первой ступени, угол наклона ракета-носителя составит 45 градусов, на высоте 58 км, затем производится её отделение. В работу включаются двигатели второй ступени, с возрастанием угла наклона. Далее, вторая ступени отделяется на высоте 225 км. Затем, ракета по инерции достигает высоты 480 км и оказывается в точке, находящейся на расстоянии 1125 км от старта. Затем начинает работать двигатели третьей ступени.

Возвращение спутника на землю

Возвращение спутника на Землю сопровождается некоторыми проблемами, связанными с торможением. Торможение может осуществляться двумя способами:

  1. Благодаря сопротивлению атмосферы. Скорость спутника, вошедшего в верхние слои атмосферы, будет уменьшаться, но из-за аэродинамической формы подскочит рикошетом обратно в космическое пространство. После этого, спутник уменьшит свою скорость и войдет глубже в атмосферу. Так повторится несколько раз. После снижения скорости, спутник будет осуществлять спуск с помощью выдвижных крыльев.
  2. Автоматический ракетный двигатель. Ракетный двигатель должен быть направлен в сторону противоположную движению искусственного спутника. Плюс данного способа заключается в том, что скорость торможения можно регулировать.

Заключение

Итак, спутники всего за полвека вошли в жизнь человека. Их участие помогает исследовать новые космические пространства. Спутник, как средство бесперебойной связи помогает сделать удобной повседневную жизнь людей. Прокладывающие путь в космические просторы, они помогают сделать нашу жизнь такой, какая она есть сейчас.

Если вышедший в открытый космос член экипажа МКС прихватил с собой небольшой ящичек, а потом выкинул его в пространство, то это вовсе не значит, что на станции проходит генеральная уборка. Скорее всего, в свой орбитальный путь отправился очень маленький спутник. Запуск наноспутников стал в наши дни если и не дешевым, то уже относительно доступным удовольствием, а к освоению космоса подключились студенты и даже любители конструкторов« сделай сам».

Олег Макаров

Большой серьезный спутник, например из тех, что обслуживают систему GPS, весит полторы-две тонны, а стоимость его изготовления и вывода на орбиту превышает $100 млн. Порядок цен космический, и тут уж ничего не поделаешь — даже килограмм глины, отправленный в космос, станет почти без преувеличения золотым. Но если этих килограммов чего бы то ни было не так много, то запуск космического аппарата может стать куда более бюджетным мероприятием.

Первый в мире искусственный спутник Земли хоть и не содержал в себе ничего, кроме радиопередатчика, весил солидные 83,6 кг. С тех пор электроника шагнула вперед, на порядки миниатюризировалась, и вот уже спутники, весящие от нескольких килограммов до нескольких граммов, могут, как оказывается, быть вполне функциональными. Как только это выяснилось, освоение космоса перестало быть исключительной прерогативой государственных ведомств и огромных ракетно-космических корпораций: наступило время студенческого и любительского спутникостроения, вместе с которым мало-помалу поднимается вторая волна космической романтики. И Россию эта волна также не обошла стороной.


CubeSat (Спутник-кубик) — наноспутник, разработанный Политехническим университетом штата Калифорния и Стэнфордским университетом специально для студенческих и любительских экспериментов в космосе. Его размеры 10 x 10 x 10 см, а вес — 1.3 кг. В наши дни комплект для сборки наноспутника можно купить в магазине.

Нашли друг друга

Можно ли было себе представить лет 20−40 назад, что создание орбитального космического аппарата станет темой студенческой работы? Сегодня студенты кафедры конструирования электронно-вычислительных средств Юго-Западного государственного университета (Курск) создают аппаратуру для отправки на орбиту. «Мы не единственный университет в России, в стенах которого разрабатываются спутники, — рассказывает начальник Центра разработки малых космических аппаратов доцент Валерьян Пиккиев. — Есть аппараты, сделанные в МГТУ им. Баумана, МГУ, Военно-космической академии им. А.Ф. Можайского, однако это все-таки уже серьезные профессиональные работы, в которых задействован весь научный потенциал наших ведущих вузов. У нас же и оборудование, и эксперименты, которые будут проводиться с помощью этой аппаратуры, — все придумывают сами студенты».

Кафедра конструирования электронно-вычислительных средств ЮЗГУ была создана в 1965 году и занималась разработкой различной электроники для отечественных предприятий, в том числе приборов военного назначения. Среди них были и вакуумметры — аппараты для измерения концентрации частиц в разреженных средах. Эти устройства вызвали интерес со стороны предприятий ракетно-космической отрасли — НПО им. Лавочкина и РКК «Энергия».


Полет в старом костюме

К этому моменту «Энергия» уже имела свою собственную программу создания и запуска малых спутников. «Все началось 15 лет назад, — рассказывает ведущий специалист РКК «Энергия» Сергей Самбуров. — В 1997 году космонавт Валерий Поляков предложил отметить 40-летний юбилей первого спутника запуском его уменьшенной копии. Предложение было принято, причем в создании аппарата принимали участие (пусть символическое) школьники из Кабардино-Балкарии и французского Реюньона. Спутник не только внешне походил на свой прообраз, но и воспроизводил его «начинку», включая передатчик сигнала «бип-бип-бип». Разумеется, для этого аппарата отдельного носителя не использовали — его доставили кораблем «Прогресс» на орбитальную станцию «Мир», а там во время планового выхода в космос «забросили» в космическое пространство».

Запуск уменьшенной копии первого ИСЗ вызвал настоящий ажиотаж среди радиолюбителей во всем мире, особенно среди тех, кто с ностальгией вспоминал молодость и радиосигнал спутника 1957 года. Тему было решено продолжить, и на следующий год был запущен еще один радиолюбительский спутник, который транслировал в эфир песни и обращался к аудитории планеты Земля на разных языках. Технология запуска спутников с борта орбитальных станций совершенствовалась, и в 2002 году РКК «Энергия» совместно с Институтом космических исследований отправила на орбиту небольшой аппарат «Колибри» с научной аппаратурой. Запускали его так: при отстыковке «Прогресса» от МКС его люк оставался незадраенным. Внутри корабля был установлен контейнер, который при пережигании пиропатроном удерживающего шнура буквально выстреливал спутником.


А в 2006 году РКК «Энергия» совместно с представителями американской радиолюбительской корпорации AMSAT дали жизнь одному из самых оригинальных проектов в истории освоения космоса. Новый радиолюбительский спутник было решено сделать на основе отслужившего свое скафандра «Орлан-М», который использовался как платформа для монтажа доставленной на МКС аппаратуры. Научного оборудования на спутнике «Радиоскаф-1» (он же SuitSat-1) не было — только антенны (установленные на шлеме), радиостанция, блок «дигитолкер» для трансляции звуковых программ, два фотоаппарата (цифровой и пленочный) и аккумулятор. Интересно, что штатный аккумулятор от скафандра не подошел — он рассчитан на небольшое количество циклов зарядки-разрядки, а спутник, испытывающий на орбите перепады температур от минус 100 до плюс 100 градусов Цельсия, израсходовал бы ресурс такого устройства очень быстро. Тем более что «Радиоскаф-1» не имел солнечных батарей и полагался только на ресурс аккумулятора. В феврале космонавт МКС Валерий Токарев, выйдя в открытый космос, оттолкнул от себя старый скафандр с новой начинкой, и спутник отправился в двухнедельную миссию.

Скаф и шкаф

Несмотря на всю экзотичность проекта, скафандр оказался весьма интересной платформой для малых спутников. Во‑первых, его не надо доставлять на МКС, так как он уже туда доставлен. Во‑вторых, продолговатая форма открывает возможности пассивной стабилизации за счет неравномерного распределения груза (более тяжелая часть всегда будет «тяготеть» к Земле, и спутник не будет вращаться вокруг своей оси). Наконец, в скафандре есть баллон, в котором может содержаться кислород или другой газ под давлением в 100 атм. Это можно использовать для развертывания надувных элементов спутника.


Однако пока в РКК «Энергия» зрел план «Радиоскафа-2» — снова на базе скафандра, случилась неувязка. Очередной старый скафандр, на котором хотели смонтировать спутник, пришлось выкинуть с МКС, не дожидаясь готовности аппаратуры для второго спутника: уж очень место в дефиците. «Ждать еще пять лет, пока состарится новый скафандр, пришедший на замену старому, мы не могли, — говорит Сергей Самбуров. — Поэтому, как мы шутим, пришлось вместо «Радиоскафа» сделать «Радиошкаф», то есть конструкцию в виде прямоугольного параллелепипеда с размерами 500 x 500 x 300 мм. Проект приурочили к полувековому юбилею полета Гагарина, а сам аппарат получил имя «Кедр» в честь позывного первого космонавта планеты». Было у него и еще одно имя — ARISSat-1, по названию международной ассоциации радиолюбителей, работающих со спутниками, которые запущены с борта МКС. Спутник делали в международном сотрудничестве, но также впервые активное участие в его создании приняла кафедра конструирования электронно-вычислительных систем ЮЗГУ, которая стала полноправным партнером проекта «Радиоскаф» в 2010 году. Здесь и пригодилось научное оборудование, сконструированное курскими студентами, — те самые вакуумметры. Конечно же, создатели «Кедра» не забыли о радиолюбителях, для которых была предусмотрена трансляция сообщений на разных языках мира. Спутник отправили на орбиту с МКС 3 августа 2011 года, и он успешно выполнил свою миссию, в частности, произведя замеры плотности частиц в безвоздушном пространстве на орбитах разных высот.


Наноспутник над Андами

«Мы продолжаем работы по программе «Радиоскаф» в сотрудничестве с РКК «Энергия», которая частично финансирует нашу деятельность и берет на себя запуск студенческих и радиолюбительских аппаратов в рамках собственных программ экспериментов, — рассказывает Валерьян Пиккиев. — Очередной спутник — «Часки-1» — мы делаем совместно со студентами Технического университета из Перу. Это будет спутник в популярном в мире наноформате CubeSat (куб со сторонами 10 см, вес 1,3 кг). Научной аппаратуры на аппарате не будет, однако мы намерены испытать специально сконструированные рамки, дающие возможность пассивной стабилизации спутника по линиям магнитного поля Земли. Кроме того, на «Часки-1» установят камеры с невысоким разрешением. Они позволят делать фото земной поверхности (две камеры в видимом спектре, две инфракрасные), изображение с них окажется доступным радиолюбителям. Будем также отрабатывать командную линию на частоте 144, 430 МГц. Все это позволит нам уже в следующем совместном спутнике запускать научную аппаратуру — в частности, новое поколение наших вакуумметров, которые способны теперь регистрировать не только концентрацию частиц, но и определять их природу».

Куда кидать — вот в чем вопрос

Конечно, наноспутники можно запускать по‑разному. Есть вариант помещения кассеты со спутниками между второй и третьей ступенями ракеты, выводящей на орбиту, скажем, тяжелый спутник связи. Разрабатываются концепции двухступенчатого запуска «самолет-ракета», наподобие проекта LauncherOne компании Virgin Galactic. Однако пока существует МКС, она будет представлять собой, пожалуй, самую надежную платформу для подобных запусков, и с этой целью ею пользуются как российские космонавты, так и астронавты США и Японии. Однако и здесь человеческий фактор можно минимизировать.


История российского студенческого и радиолюбительского спутникостроения началась в 1996 году, когда по инициативе космонавта Валерия Полякова с борта станции «Мир» была запущена уменьшенная копия первого в мире ИСЗ. Полет вызвал большой интерес радиолюбителей во всем мире.

«Сейчас в рамках нашей программы мы делаем пушку для запуска маленьких спутников, — говорит Сергей Самбуров. — Это будет коробка размером с обувную, а внутри разместится пружина, которая по команде в нужный момент вытолкнет спутник. А это не так просто на самом деле, поскольку аппарат надо запустить в правильном направлении, придав ему при этом вращение. Если просто бросить спутник в сторону от станции, то по законам баллистики он к станции и вернется. Надо кидать по вектору движения или против вектора, но по вектору нельзя, потому что тогда спутник поднимется на более высокую орбиту и будет над станцией летать, а если станция орбиту скорректирует, может произойти столкновение. Вероятность небольшая, но она есть. Надо кидать против вектора, и тогда аппарат уходит под станцию, а затем обгоняет ее и уже никогда с ней не столкнется». Техника запуска спутника вручную достаточно сложна, и еще на Земле космонавты отрабатывают ее на тренировках в гидробассейне. Если же будет создано автоматическое устройство отстреливания спутников, то экипажу нужно будет сделать ровно две вещи: вытащить устройство наружу, в космос, а потом, по возвращении на станцию, дать команду на пуск.


Полезно и безопасно

Сегодня в РКК «Энергия» создано специальное подразделение, занимающееся малыми космическими аппаратами. Главная задача его деятельности — образовательная. «Студенты, которые еще во время обучения приняли участие в создании космических аппаратов, придут к нам специалистами с опытом практического конструирования. Для нас это очень важно, — говорит Сергей Самбуров. — Кроме того, не надо думать, что малые спутники годятся только для обучения и хобби. На них можно отрабатывать технологии движения и маневрирования, системы стабилизации, работу новых приборов для вполне серьезных задач. А при сравнительно невысокой стоимости этих аппаратов ниже и цена ошибки, которая в противном случае может сгубить большой и дорогостоящий спутник или зонд».

Остается лишь последний вопрос: не станет ли общемировое увлечение наноспутниками еще одним фактором загрязнения околоземного пространства — ведь космического мусора на орбитах и так достаточно. «Тут не о чем беспокоиться, — объясняет Валерьян Пиккиев. — Любительские спутники не относятся к орбитальным долгожителям. С высоты МКС (примерно 400 км) наши спутники летят к плотным слоям атмосферы всего полгода. Кроме того, мы изготавливаем их из таких материалов, которые легко сгорают от трения об воздух, так что ни одно из наших детищ никому и никогда на голову не обрушится.

В январе 2018 года произошел первый в истории человечества успешный нелегальный запуск спутника в космос, вернее сразу четырех небольших экспериментальных орбитальных дронов.

Провернуть нелегальный запуск спутников под названием SpaceBee-1, 2, 3 и 4 в космос удалось американской компании Swarm Technologies, которая договорилась с индийскими специалистами о том, что они дополнительно загрузят четыре дрона размером с книгу на ракету-носитель Polar Satellite Launch Vehicle вместе с тремя десятками других спутников.

Индийская организация космических исследований (ISRO) еще в 2000-х годах задалась целью вывести на орбиту сотни спутников для нужд государства и бизнеса, и добилась в этом направлении заметных успехов, так что «прихватить» с собой несколько коммерческих устройств для них не составило особого труда.


Согласно открытым данным, последний успешный пуск ракеты PSLV со спутниками Индии, США, Канады, Финляндии, Франции и Южной Кореи состоялся 12 января 2018 года.

Лишь после того, как спутники Swarm Technologies оказались в космосе, надзорные органы США подняли тревогу: нормально отслеживать мелкие объекты на орбите сложно, но при этом они представляют смертельную опасность любому устройству или кораблю, с которым могут столкнуться.

Правовая коллизия с Swarm Technologies заключается в том, что ответственность за ее действия в космосе несет не Индия, а США, где зарегистрирована эта компания. Особенно негодует по этому поводу научное сообщество, которое требует разобраться, каким образом группа частных лиц в тайне от государства вывела свои спутники на орбиту в то время, когда строго отчитываться о подобных вещах, за редчайшим исключением, обязан даже Пентагон.

Как пишет другое сетевое издание IEEE Spectrum, спутники SpaceBee-1, 2, 3 и 4 предназначены для «двусторонней спутниковой связи и передачи данных из США». Про саму компанию Swarm Technologies известно, что она «выросла» из известного в профессиональных кругах стартапа Silicon Valley в Калифорнии.

Компания была основана два года назад канадским аэрокосмическим инженером, бывшим сотрудником NASA и Google Сарой Спанджело и преподавателем Мичиганского университета, независимым разработчиком Бенджамином Лонгмайером, который продал свою предыдущую компанию Aether Industries корпорации Apple.

В компании всего пять сотрудников, и вся эта команда работает над системой, которая позволит бизнесу использовать возможности спутникового интернета для создания единой сети из морских судов, грузовиков, автомобилей, сельскохозяйственной техники и вообще чего угодно, чему можно присвоить IP-адрес. Интернет всем этим устройствам в любой точке земного шара и должны раздавать SpaceBee-1, 2, 3 и 4, а также их будущие аналоги.

Предположительно, собственные спутники понадобились Swarm Technologies для того, чтобы показать потенциальным инвесторам, насколько дешевым может быть спутниковый интернет при правильном подходе к делу в рамках концепции «Интернета вещей».

Все бы ничего, но в декабре 2017 года Федеральная комиссия по связи США официально отклонила заявку компании на запуск экспериментальных спутников по соображениям безопасности, после чего стартаперы просто проигнорировали это решение, создав тем самым опасный прецедент, который в будущем может обернуться катастрофой или гибелью космонавтов. Накажут ли предприимчивых инженеров или им удастся завершить работу над своим проектом, пока неизвестно.

источники

И частные компании, и некоммерческие организации, и отдельные энтузиасты всё чаще собирают деньги на космические проекты через краудфандинговые платформы. Рассказываем о наиболее интересных идеях.

Увидеть следы «Аполлонов»

Вопрос, были ли американцы на Луне, волнует огромное число людей по всему миру. А уж россиян — особенно.

Четыре года назад известный популяризатор космонавтики, блогер Виталий Егоров предложил получить ответ на «проклятый» вопрос самым что ни на есть прямым способом — отправить на орбиту Луны спутник, который сфотографирует места посадки «Аполлонов». Всего их, напомним, было шесть, и в окрестностях должно сохраниться много следов астронавтов, оставленных ими артефактов (вплоть до луномобилей), да и просто мусора.

«Сейчас на орбиту чуть ли не каждый месяц запускают частные и студенческие спутники, — рассказал Виталий Егоров на недавней презентации проекта, проходившей в Музее космонавтики. — Мы решили замахнуться на что-нибудь посложнее. А это Луна. Как известно, общество волнуют два вопроса: существуют ли инопланетяне и были ли американцы на Луне. Я лично не сомневаюсь, что американцы на Луне были. С инопланетянами непонятно, но мы их отложили на потом, а пока решили сконцентрироваться на более реальной цели».

В октябре 2015 года Егоров объявил о сборе средств на постройку «народного» микроспутника. Тогда менее чем за три дня блогер со своей командой собрал свыше миллиона рублей. Первая версия космического аппарата была весьма скромной — с небольшим двигателем и солнечными батареями. Но затем, изучив все нюансы предстоящей миссии, участники проекта были вынуждены увеличить массу спутника, добавить ему полноценный жидкостный двигатель и мощную антенну. Зонд оснастят фотоаппаратурой, которая сделает очень чёткие снимки: каждый пиксель будет соответствовать 25 см поверхности Луны.

С 2015 года аппарат всячески упрощали, и нынешняя его версия — уже четвёртая. Но чтобы построить спутник, средств понадобится примерно в тысячу раз больше, чем было собрано с помощью краудфандинга. Участники рассчитывают на разные варианты финансирования — на частных спонсоров, рекламные контракты, а также на помощь со стороны общества, бизнеса и государства.

«Если сегодня к нам придёт потенциальный спонсор и подарит грузовик, наполненный деньгами, мы сможем подготовить аппарат и доставить его на Байконур или Восточный в ближайшие три года, — отметил Виталий Егоров. — Когда его запустят, будет зависеть от того, какие ракеты окажутся доступны. Но на этот запуск будут смотреть все, ведь людей, верящих в лунный заговор, хватает».

На что скидываются на Западе?

Первым космическим проектом англоязычной краудфандинговой платформы Kickstarter была предпринятая девять лет назад попытка запустить в атмосферу очень большой воздушный шар, чтобы сфотографировать Землю с высоты 40 км (это уже считается ближним космосом). Удалось собрать 296 долларов.

Наиболее шумной кампанией сбора средств на той же платформе стоит признать Arkyd-100. Это проект «космического телескопа для всех». О нём в 2013 году объявила фирма Planetary Resources, которая намеревалась заняться добычей полезных ископаемых на астероидах. В общей сложности было собрано более 1,5 млн долларов. Жертвователям обещали «космические селфи» на борту телескопа и съемку астрономических объектов по желанию. Однако в 2016 году было объявлено, что запуск телескопа не состоится. Деньги должны были вернуть.

10 фантастических снимков телескопа «Хаббл»

Ещё одна компания собирается отправить на Луну космический зонд, чтобы он просверлил скалы на её Южном полюсе. Уже привлечено более миллиона долларов. А некоммерческое «Планетарное общество» (Planetary Society) 10 лет собирало средства на миссию крошечного спутника с солнечным парусом LightSail. Цель проекта была проста — показать, что создание такого космического аппарата в принципе возможно. Его стоимость оценивалась в 1,8 млн долларов, и эти деньги, в конце концов, были собраны. 25 июня 2019 года солнечный парусник отправился на орбиту.

Среди других космических проектов, получивших финансирование от интернет-общественности, можно упомянуть SkyCube (сверхмалый спутник, «надувающий» блестящий воздушный шар, видимый с Земли), KickSat (на орбите он должен выпустить рой крохотных спутников размером с почтовую марку) и Plasma Jet Electric Thrusters (плазменный двигатель, который найдёт применение в космонавтике будущего).

...и на что — у нас?

В России тоже собирали деньги на запуск стратосферного зонда. Автор идеи — спасатель и фотограф Денис Ефремов . Сначала он вместе с другом отправил в стратосферу видеокамеру в честь юбилея полёта Юрия Гагарина . А затем объявил о сборе средств на запуск стратостата. Достигнув критического размера на большой высоте, этот шар должен лопнуть, а платформа с оборудованием — спуститься на парашюте.

«Моя цель — устроить детский научный фестиваль на базе крупной образовательной программы, — сообщал Денис Ефремов. — Ядро проекта — запуски в ближний космос на высоту до 40 км. Отправить что-то своё в космос, следить за полётом, искать место приземления и снова взять в руки то, что побывало „там“, — это чудо! Дети получают стимул интересоваться наукой. Они своими глазами видят и могут придумать сами, как применить знания на практике. И, наконец, запуск и поиски платформы на природе — это настоящее приключение, которое вытащит из соцсетей любого школьника!»

Проект стал успешным. Планировалось собрать 140 тыс. рублей, в итоге удалось привлечь 155 тыс.

В 2014 году группа энтузиастов создала сообщество «Твой сектор космоса», которое впервые на практике доказало, что в России любители космонавтики могут запустить на орбиту свой собственный космический аппарат. Им стал спутник «Маяк». Cредства собирали методом краудфандинга за две кампании, в 2014 и 2016 годах. Всего собрали около 2,5 млн рублей. Непосредственно на создание лётного экземпляра аппарата, его дублёра и их испытания ушло порядка 1 млн рублей.

«Мы показали, что можно придумать спутник вместе с друзьями, без огромных заводов и сложных лабораторий построить его и запустить в самый настоящий космос, — делится впечатлениями руководитель проекта Александр Шаенко , инженер и кандидат технических наук. — Идея была в том, чтобы создать яркий светящийся объект, видимый невооруженным глазом».

Было решено снабдить спутник солнечным отражателем в виде пирамиды из металлизированной плёнки, который после выхода на орбиту должен развернуться. «Маяк» должен был почти на месяц стать самой яркой мерцающей звездой на ночном небе. Аппарат запустили 14 июля 2017 года с космодрома «Байконур» и успешно вывели на орбиту одновременно с 72 другими спутниками. К сожалению, отражатель так и не раскрылся. Вместе с «Маяком» отказали ещё 9 спутников, запущенных на ракете-носителе.

Вторым проектом сообщества «Твой сектор космоса» стал фотобиореактор для выращивания микроскопических зелёных водорослей. Его назвали 435nm. В дальнейшем на основе созданной установки планируется построить космическую систему жизнеобеспечения и испытать её в орбитальном полёте.

«Россия наряду с другими странами участвует в марсианской гонке, и мы заинтересованы в том, чтобы наша страна вышла из неё победителем, — говорит Александр Шаенко. — Одна из важных частей проекта по освоению Красной планеты — разработка космических кораблей, а для них необходимы технологии жизнеобеспечения. Поэтому в нашем сообществе и зародился проект биореактора 435nm».

Сбор средств завершили в марте 2018, команде удалось привлечь 407 тыс. рублей. Был создан прототип, проведены его испытания. Примечательно, что технология найдёт применение не только в космосе, но и на Земле. Такие фотобиореакторы можно будет использовать для очистки стоков или воздуха, выработки сырья для биотоплива и других практических задач.


Продолжаем наш цикл статей «Все обо всем». В этот раз поговорим о спутниках.

Не так давно спутники были экзотикой и сверх-секретными устройствами. В основном они использовались в военных целях, навигации и шпионаже. Теперь же они является неотъемлемой частью современной жизни. Мы может увидеть их в прогнозировании погоды, телевидении и даже в обычных телефонных звонках. Спутники также часто играют вспомогательную роль в некоторых областях:

  • Некоторые газеты и журналы быстры потому, что они отправляют материалы на печать в разные типографии через спутники, чтобы ускорить локальную дистрибьюцию.
  • Перед тем как передать сигнал по проводам пользователям кабельного телевидения, компании-провайдеры используют спутники для передачи сигнала.
  • В последнее время небывалую популярность преобрели геолокационные возможности, предоставляемые системами GPS и ГЛОНАСС. С помощью них мы может быстрее и точнее добраться до необходимого месяца.
  • Товары, которые мы покупаем, доставляются производителями поставщика более эффективно, благодаря логистики с использованием геолокации с помощью GPS и ГЛОНАСС.
  • Радиомаяки с упавших самолетов и терпящих бедствие кораблей отправляют через спутник сигналы командам спасения.
В этой статье мы постараемся рассмотреть принципы функционирования спутников и то, что они делают. Мы посмотрим внутрь спутника, исследуем различные типы орбит и то, как задачи спутника воздействуют на выбор орбиты. И постараемся рассказать как увидеть и проследить за спутником самостоятельно!

Что такое Спутник?

Спутник в общем - это объект, которые вращается вокруг планеты по круговой или эллиптической орбите. Например, Луна - это природный естественный спутник Земли, однако существует еще много сделанных человеком (искусственных) спутников, которые как правило ближе к Земле.

Путь по которому следует спутник называется орбитой. Самая далекая от Земли точка орбиты называется апогеем, ближайшая - перигеем.

Искусственные спутники не являются продуктами массового производства. Большинство спутников были специально произведены для выполнения предназначенных им функций. Исключение составляют спутники GPS/ГЛОНАСС (которых около 20 копий для каждой из систем) и спутники системы Iridium (которых больше 60 копий, они используются для передачи голосовой связт).

Существует также около 23 000 объектов, которые являются космическим мусором. Эти объекты имеют достаточный размер для того, чтобы улавливаться радаром. Они либо случайно оказались на орбите, либо исчерпали свою полезность. Точное число зависит от того, кто считает. Полезный груз, который попал на неправильную орбиту, спутники у которых сели батареи и также остатки разгонных блоков ракет - все это составляет космический мусор. Например, этот онлайн каталог спутников насчитывает около 26 000 объектов.

Хотя любой объект на орбите земли вообще-то можно назвать спутником, термин «спутник» обычно используется для описания полезного объекта размещенного на орбите для выполнения некоторых важных задач. Нам часто приходится слышать о погодных спутниках, спутниках связи и научных спутниках.

Чей спутник первым оказался на орбите Земли?

Вообще, самым первым спутником Земли по праву стоит считать Луну:)

Для нашей общей радости, первым искусственным спутником Земли был «Спутник 1», запущенный Советским Союзом 4 октября 1957 года. Ура, товарищи!

Однако, из-за существовавшей в то время строжайшей секретности, в свободном доступе нет фотографий того знаменитого запуска. Спутник-1 имел длину 23-дюйма (58 сантиметров), весил 184 фунта (83 килограмма) и имел форму металлического шара. Однако, для того времени это было важное достижение. Содержимое спутника по современным меркам кажется скудным:

  • Термометр
  • Батарея
  • Радио передатчик - изменял тон своих звуков согласно показаниям термометра
  • Азот - создавал давление внутри спутника
На внешней части было размещено четыре тонких антенны, которые передавали сигнал на коротковолновых частотах, которые сейчас используются как гражданские (27 МГц). Согласно настольной книге космических спутников Энтони Кертиса:

После 92 дней, гравитация сделала свое дело и Спутник-1 сгорел в атмосфере Земли. Тридцать дней спустя после запуска Спутник-1, собака Лайка совершила полет на полутонном спутнике с воздухом. Этот спутник сгорел в атмосфере в апреле 1958 года.

Спутник-1 это хороший пример того, каким простым может быть спутник. Как мы увидим дальше, современные спутники гораздо более сложными, но основная идея проста.

Как спутники запускают на орбиту?


Все современные спутники попадают на орбиту с помощью ракет. Некоторые доставлялись на орбиту в грузовом отсеке шаттлов. Возможность запуска спутников на орбиту имеют несколько стран и даже коммерческих компаний, и теперь нет ничего необычного в доставке на орбиту спутника весом несколько тонн.

Для большинства запланированных запусков, ракета как правило располагается вертикально вверх. Это позволяет ей пройти плотные слои атмосферы быстро и с минимальными затратами топлива.

После того, как ракета запущена вертикально вверх, система управления ракетой используется инерциальную систему наведения для управления соплами ракеты и наводит ее на расчетную траекторию. В большинстве случаев ракета направляется на восток, потому что сама Земля вращается на восток, что позволяет добавить ракете «бесплатное» ускорение. Сила такого «бесплатного» ускорения зависит от скорости вращения Земли в месте запуска. Самое большое ускорение - на экваторе, там где расстояние вокруг Земли наибольшее, а следственно и скорость вращения тоже.

Насколько велико ускорение при экваториальном запуске? Для грубой оценки мы можем вычислить длину экватора Земли путем умножения ее диаметра на число пи (3.141592654...). Диаметр земли примерно 12 753 километра. Умножая на пи получаем длину окружности около 40 065 километров. Для прохождения всей окружности в 24 часа точка на поверхности Земли должна двигаться со скоростью 1 669 км/ч. Запуск с Байконура в Казахстане не дает такого большого ускорения от вращения Земли. Скорость вращения Земли в районе Байконура около 1 134 км/ч, а в районе Плесецка вообще 760 км/ч. Таким образом запуск с экватора дает большее «бесплатное» ускорение. Вообще Земля имеет не совсем форму сферы - она приплюснута. Поэтому наша оценка Длины окружности Земли несколько неточна.

Но подождите, скажете Вы, если ракеты способы достигать скоростей в тысячи километров в час, то что даст небольшой прирост? Ответ состоит в том, что ракеты, вместе с топливом и полезным грузом, очень тяжелые. Например, ракета-носитель протон согласно данным википедии имеет стартовую массу 705 тонн. Для ускорения такой массы даже до 1 134 км/ч требуется огромное количество энергии, а следовательно и большой объем топлива. Поэтому запуск с экватора дает ощутимые выгоды.

Когда ракета достигает очень разреженного воздуха на высоте примерно 193 километра, система управления ракетой включает небольшие двигатели, достаточные для поворота ракеты в горизонтальное положение. Затем спутник отделяется от ракеты. Затем ракета снова включает двигатели для обеспечения некоторого разделения ракеты и спутника.

Инерциальный системы наведения

Ракета должна управляться очень точно для выведения спутника на требуемую орбиту, и ошибки в этом деле очень дорого стоят (вспомните неудачи Роскосмоса со спутниками ГЛОНАСС или зондом Фобос-Грунт, которые оказались не на той орбите, на какой следовало бы). Инерциальные системы наведения внутри ракет делают такое управление возможным. Такая система определяет точное положение ракеты и ее направления путем измерения ускорения ракеты с использованием гироскопов и акселерометров. Расположенные в кардановом подвесе , оси гироскопа всегда показывают в одном направлении. Кроме того, платформа гироскопов содержит акселерометры, которые измеряют ускорение в трех разных осях. Если системе управления известно первоначальное местоположение ракеты в момент запуск и ускорения в момент полета, она сможет рассчитать положение ракеты и ориентацию в пространстве.

Орбитальная скорость и высота


Ракета должна разогнаться до скорости как минимум 40 320 км/ч (11.2 км/с) чтобы полностью выйти из Земной гравитации и отправиться в космос. Эта скорость называется второй космической скоростью и для разных небесных тел она разная.

Вторая космическая скорость земли куда больше, чем скорость требуемая для помещения спутников на орбиту. Спутникам не требуется выходить из гравитации Земли, им нужно балансировать относительно нее. Орбитальная скорость - это скорость требуемая для достижения равновесия между гравитационным притяжением и инерцией движения спутника. В среднем эта скорость составляет 27 359 км/ч на высоте примерно 242 километра. Без гравитации, инерция спутника будет выталкивать его в космос. Хотя даже если гравитация присутствует, то слишком большая скорость спутника выведет его с орбиты Земли в открытый космос. С другой стороны, если спутник будет двигаться медленно, то под действием гравитации он упадет обратно на Землю. Если спутник будет иметь определенную правильную скорость, то гравитации будет уравновешена инерцией спутника, сила тяжести Земли будет достаточна для того, чтобы спутник двигался по круговой или эллиптической орбите, а не улетел в космос по прямой линии.

Орбитальная скорость спутника зависит от того, на какой высоте последний находится. Чем ближе к Земли - тем больше требуемая скорость. На высоте 200 километров, требуемая орбитальная скорость составляет около 27 400 км/ч. Для поддержания орбиты в 35 786 км, спутник должен двигаться по орбите со скоростью около 11 300 км/ч. Такая орбитальная скорость позволит спутнику сделать один оборот вокруг Земли за 24 часа. Так как сама Земля вращается со скоростью 24 часа, спутник на высоте 35 786 км будет оставаться строго над одной и той же точкой на поверхности Земли. Такая орбита носит название «геостационарная». Геостационарные орбиты идеальны для погодных спутников и спутников связи.

Луна имеет «высоту» относительно Земли 384 400 километров, а ее орбитальная скорость составляет 3 700 км/ч. Она совершает полный оборот по своей орбите за 27.322 дня. Заметьте, что ее орбитальная скорость ниже, потому что она находится дальше искусственных спутников.

Вообщем, чем выше орбита, тем дольше спутник может находится на орбите. На низких высотах, спутник входит в слои атмосферы, которая создает трение. Трение отнимает часть энергии движения спутника, и он попадает в более плотные слои и, падая на Землю, сгорает в атмосфере. На больших высотах, где почти вакуум, трения не возникает и спутник может оставаться на орбите веками (возьмем Луну, например).

Спутники, как правило, сначала имеют эллиптическую орбиту. Наземные станции управления используют небольшие реактивные двигатели спутника для корректировки орбиты. Цель - сделать орбиту круговой настолько, насколько это возможно. Включение реактивного двигателя в апогее орбиты (наиболее удаленная точка), и приложение силы в направлении полета смещают перигей дальше от Земли. В результате орбита приближается по форме к круговой.

Продолжение следует…

 
Статьи по теме:
Для чего нужен сервер, какие серверы бывают
Что такое сервер? По своей сути, это мощный компьютер, который может бесперебойно выполнять разного характера задачи и обрабатывать информацию, которая поступает большим потоком. Зачастую серверные машины устанавливаются в крупных компаниях. По своей функ
Где находится главный офис
Мы выпустили новую книгу «Контент-маркетинг в социальных сетях: Как засесть в голову подписчиков и влюбить их в свой бренд». Подписаться Google – это поисковая система с дополнительными инструментами и сервисами. Можно сказать, что Google.com –
Приложения, которые облегчат жизнь преподавателю Андроид приложения которые облегчают жизнь
Современному преподавателю очень важно идти в ногу со временем, постоянно развиваться и, несмотря ни на что, оставаться профессионалами своего дела. Именно поэтому мы рады представить подборку приложений, которые каждый учитель сможет найти крайне полезны
Как убрать защитный код на нокиа
Инструкция Блокировка сим-карты осуществляется при помощи пин-кода. Это цифр, которые необходимо ввести с при включении . Данная мера безопасности предназначена для сохранности личных данных владельца в случае потери либо кражи сим-карты. В случае, если в